Explicație pas cu pas:
π/3*180°/π=60°
BC²=AB²+AC²-2*AB*AC*cos(A)
BC²=3+2-2*√6*1/2=5-√6⇒BC=√(5-√6) cm
Fie CD=x
BD=√[(5-√6)-x)]
Din teorema bisctoarei avem:
BD/CD=AB/AC⇒(√(5-√6)-x)/x=√3/√2⇒x√3=√2(√(5-√6)-x)⇒
⇒x√3=√(10-2√6)-x√2⇒x(√3+√2)=√(10-2√6)⇒
⇒x=√(10-2√6) *(√3-√2) (cm)
In ΔABC⇒AB/sinC=BC/sinA sin(<ADC)=45°
√3/sin C=√(5-√6)/sin60°
√3/sin C=(2√3*√(5-√6))/3
sin C=3√3/2√3*√(5-√6)
sin C=3√(5-√6)/(10-2√6)
In ΔADC ⇒AD/sin C=AC/sinD⇒AD=[sin C*AC]/sin D
⇒AD=6√(95+19√6)/38 (cm)
Bafta!!