Răspuns :
p=(AB+BC+AC)/2=(50+50+60)/2=160/2=80 u
r=√[(p-AB)(p-BC)(p-AC)/p]=√[(80-50)(80-50)(80-60)/80]=√[(30*30*20)/80]=√(18000/80)=√225=15 u=>r=15 u
A=p*r=80*15=1200 u²
A=AB*BC*AC/4R=>4R=AB*BC*AC/A=>R=AB*BC*AC/4A=50*50*60/(4*1200)=150000/4800=1500/48=375/12=125/4 u
R=125/4 u
Explicație pas cu pas:
R-raza cercului circumscris
r-raza cercului inscris
1.In acest triunghi isoscel ducem inaltimea AD, AD⊥BC;
AD=√(AB²-(BC/2)²)=√(50²-30²)=√(50-30)(50+30)=√(20*80)=√1600=40(u)
sinB=AD/AB=40/50=4/5
Aplicam Teorema Sinusurilor:
AC/sinB=2*R⇒50/4/5=2*R⇒250/4=2*R⇒R=250/8⇒R=125/4(u)
2.
r=4*R*sinA/2*sinB/2*sinC/2
sinA/2=3/5
sinB/2=√(1-cosB)/2
cosB=√(1-sin²B)=√(1-16/25)=√(9/25)=3/5
sinC/2=sinB/2=√(1-3/5)/2=√(2/5/2)=√5/5
r=4*125/4*3/5*(√5/5)²=25*3*5/25=15(u)
Raspuns: R=125/4(u) r=15(u)
Bafta!