Răspuns :
Explicație pas cu pas:
√(1+3+5+...+2013)∈Q
√[(2-1)+(4-1)+(6-1)+...+(2014-1)]
=√[2(1+2+3+...+1007)-1007])
=√[2*1007(1007+1)/2-1007]
=√(1007*1008-1007)
=√(1007(1008-1)
=√1007²
1007∈Q
Bafta!
1+3+5+...+n = [(n+1)/2]² (formulă)
1+3+5+...+2013 = [(2013+1)/2]² =
= (2014/2)² = 1007²
=> √(1+3+5+...+2013) = √(1007²) =
= |1007| = 1007 ∈ Q