Răspuns :
2a = 2 + 2^2 + 2^3 + .... + 2^2014 + 2^2015 si
a = 1+2+2^2+2^3+...+2^214
__________________________ scazi una sub cealalta cele doua egalitati si obtii
a = 2^2015 - 1.
Bafta!
a = 1+2+2^2+2^3+...+2^214
__________________________ scazi una sub cealalta cele doua egalitati si obtii
a = 2^2015 - 1.
Bafta!
Folosesti formula generala:
[tex] x^{n+1} -1 = (x-1)(1+x+ x^{2} + x^{3} + ... + x^{n} )[/tex]
In cazul tau ai x=2 si n=2014, deci
[tex] 2^{2014+1} -1 = (2-1)(1+2+ 2^{2} + 2^{3} + ... + 2^{2014} )[/tex], de unde:
a=[tex]1+2+ 2^{2} + 2^{3} + ... + 2^{2014}[/tex]=[tex] 2^{2015} -1[/tex]
[tex] x^{n+1} -1 = (x-1)(1+x+ x^{2} + x^{3} + ... + x^{n} )[/tex]
In cazul tau ai x=2 si n=2014, deci
[tex] 2^{2014+1} -1 = (2-1)(1+2+ 2^{2} + 2^{3} + ... + 2^{2014} )[/tex], de unde:
a=[tex]1+2+ 2^{2} + 2^{3} + ... + 2^{2014}[/tex]=[tex] 2^{2015} -1[/tex]