👤
RazvanInfo
a fost răspuns

Salut, ma puteti ajuta la problema 718, am incercat prin parti insa nu iasa...



Salut Ma Puteti Ajuta La Problema 718 Am Incercat Prin Parti Insa Nu Iasa class=

Răspuns :

Răspuns:

Explicație pas cu pas:

Rezolvarea integrală este în imaginea de mai jos. Mult succes!

Vezi imaginea Amc6565
Rayzen

[tex]I = \displaystyle \int_{\frac{1}{n}}^n \dfrac{\text{arctg}\,(x^2)}{1+x^2}\, dx \\ \\ x = \dfrac{1}{t} \Rightarrow dx = -\dfrac{1}{t^2}\,dt \\ \\ x = \dfrac{1}{n}\Rightarrow t = n\\ x = n \Rightarrow t = \dfrac{1}{n}\\ \\ I = \int_{n}^{\frac{1}{n}}\dfrac{\text{arctg} (\frac{1}{t^2})}{1+\frac{1}{t^2}}\cdot (-\dfrac{1}{t^2})\, dt = \int_{\frac{1}{n}}^n \dfrac{t^2\text{arctg}(\frac{1}{t^2})}{1+t^2}\cdot \dfrac{1}{t^2}\, dt =[/tex]

[tex]\displaystyle = \int_{\frac{1}{n}}^n\dfrac{\text{arctg}(\frac{1}{t^2})}{1+t^2}\, dt \\ \\ I + I = \int_{\frac{1}{n}}^n \dfrac{\text{arctg}\,(x^2)}{1+x^2}\, dx + \int_{\frac{1}{n}}^n \dfrac{\text{arctg}\,(\frac{1}{x^2})}{1+x^2}\, dx \\ \\ 2I = \int_{\frac{1}{n}}^n \dfrac{\text{arctg}\,(x^2)+\text{arctg}(\frac{1}{x^2})}{1+x^2}\, dx\\ \\ 2I = \int_{\frac{1}{n}}^n\dfrac{\dfrac{\pi}{2}}{1+x^2}\, dx[/tex]

[tex]2I = \dfrac{\pi}{2}\int_{\frac{1}{n}}^n\dfrac{1}{1+x^2}\, dx\\ \\ 2I = \dfrac{\pi}{2}\cdot \text{arctg}(x)\Big|_{\frac{1}{n}}^n \\ \\ I = \dfrac{\pi}{4}\cdot \text{arctg}(n) - \dfrac{\pi}{4}\cdot \text{arctg}(\frac{1}{n})\\ \\ \Rightarrow \lim\limits_{n\to \infty }I = \dfrac{\pi}{4}\cdot \dfrac{\pi}{2}-0 = \boxed{\dfrac{\pi^2}{8}}[/tex]