Răspuns :
Răspuns:
Explicație pas cu pas:
Presupun ca este o prisma dreapta.
a) V = Ab x h = l^2 rad3 / 4 x h =
25rad3 / 4 x 15 = 15x25rad3 / 4 = 375rad3 / 4 = 93,75rad3 cm^3 ≅ 162,24 cm^3
b) At = 2Ab + Al = l^2 rad3 / 2 + 3(5x15) =
25rad3 / 2 + 3x75 =
25rad3 / 2 + 225 =
25(rad3 / 2 + 9) =
25(rad3 + 18) / 2 ≅ 12,5 * 19,73 ≅ 246,65 cm^2
[tex]\it a)\ \mathcal{V} =\mathcal{A}_b\cdot h\\ \\ \mathcal{A}_b=\dfrac{\ell^2\sqrt3}{4}= \dfrac{5^2\sqrt3}{4}=\dfrac{25\sqrt3}{4}\ cm^2\\ \\ \\ \mathcal{V}=\dfrac{25\sqrt3}{4}\cdot15=\dfrac{375\sqrt3}{4}cm^3[/tex]
[tex]\it \mathcal{A}_{\ell}=3\cdot\mathcal{A}_{ABB'A'}=3\cdot5\cdot15\ =225\ cm^2\\ \\ \mathcal{A}_t=\mathcal{A}_{\ell} +2\cdot\mathcal{A}_b=225+2\cdot\dfrac{25\sqrt3}{4}=225+\dfrac{25\sqrt3}{2}=\dfrac{450+25\sqrt3}{2}\ cm^2[/tex]