f(x-1)=3x-2+g(1) -3f(1)
g(x-1)=x +2+2g(1) -f(1)
a) Pentru x = 2:
f(2-1) = 6-2+g(1)-3f(1)
g(2-1) = 4+2g(1)-3f(1)
f(1) = 4+g(1)-3f(1)
g(1) = 4+2g(1)-3f(1)
4f(1)-g(1) = 4
3f(1)-g(1) = 4
------------------ (-)
f(1) = 0 => g(1) = -4
=> f(x-1) = 3x-2-4 = 3x-6
=> g(x-1) = x+2-8 = x-6
b) f(x-1) = 3x-6
x-1 = t => x = t+1
=> f(t) = 3(t+1)-6 = 3t-3 => f(x) = 3x-3
g(x-1) = x-6
x-1 = t => x = t+1
g(t) = t+1-6 = t-5 => g(x) = x-5
f(x) = g(x) => 3x-3 = x-5 => 2x = -2 => x = -1
=> f(-1) = g(-1) = -6
=> Punctul de intersectie este (-1,-6).