Răspuns :
este evident că nu ți da nimeni răspunsul la toate, ținând cont de dificultate. Postează pe rand, cate 2-3, pentru a avea o șansă!
ex322
mai întâi avem produsul puterilor lui 3:
P=3^(1+2+3+...n)=3^[n(n+1)/2]=9^[n(n+1)/4]
apoi 81^1262=9^(2*1262)=2^2524
calculul final arată
9^[n(n+1)/4]=(8+1)*9^2524=9^2525
egalitatea membrilor se realizează ptr.
n(n+1)/4=2525
n(n+1)=4*25*101=100*101
deci n=100
Mi s a părut interesant ultimul, 329
pornesc de la
6^1=1^2+5*1^2
6^2=4^2+5*2^2
pentru n=2k+1 impar, scriem
6^n=6*6^(2k)=(1+5*1)*6^(2k)=(6^k)^2+5*(6^k)^2 deci cu forma dorită
pentru n=2k par
6^(2k)=6^2 * 6^(2k-2)=(4^2+5*2^2)*6^2(k-1)=[4*6^(k-1)]^2+5*[2*6^(k-1)]^2 care are tot forma dorită
am găsit astfel regula
n=2k aleg x=4*6^(k-1) și y=2*6^(k-1)
n=2k+1 aleg x=6^k=y
ex322
mai întâi avem produsul puterilor lui 3:
P=3^(1+2+3+...n)=3^[n(n+1)/2]=9^[n(n+1)/4]
apoi 81^1262=9^(2*1262)=2^2524
calculul final arată
9^[n(n+1)/4]=(8+1)*9^2524=9^2525
egalitatea membrilor se realizează ptr.
n(n+1)/4=2525
n(n+1)=4*25*101=100*101
deci n=100
Mi s a părut interesant ultimul, 329
pornesc de la
6^1=1^2+5*1^2
6^2=4^2+5*2^2
pentru n=2k+1 impar, scriem
6^n=6*6^(2k)=(1+5*1)*6^(2k)=(6^k)^2+5*(6^k)^2 deci cu forma dorită
pentru n=2k par
6^(2k)=6^2 * 6^(2k-2)=(4^2+5*2^2)*6^2(k-1)=[4*6^(k-1)]^2+5*[2*6^(k-1)]^2 care are tot forma dorită
am găsit astfel regula
n=2k aleg x=4*6^(k-1) și y=2*6^(k-1)
n=2k+1 aleg x=6^k=y