Răspuns :
[tex] {(1 + i)}^{10} + {(1 - i)}^{6} + {(1 + i)}^{12} + {(2 - i)}^{12} [/tex]
[tex] = {[ {(1 + i)}^{2} ]}^{5} + {[ {(1 - i)}^{2} ]}^{3} + {[ {(1 + i)}^{2} ]}^{6} + {[ {(2 - i)}^{2} ]}^{6} [/tex]
[tex] = {( {1}^{2} + 2 \times 1 \times i + {i}^{2}) }^{5} + {( {1}^{2} - 2 \times 1 \times i + {i}^{2} )}^{3} + {( {1}^{2} + 2 \times 1 \times i + {i}^{2}) }^{6} + {( {2}^{2} - 2 \times 2 \times i + {i}^{2}) }^{6} [/tex]
[tex] = {(1 + 2i - 1)}^{5} + {(1 - 2i - 1) }^{3} + {(1 + 2i - 1)}^{6} + {(4 - 4i - 1)}^{6} [/tex]
[tex] = {(2i)}^{5} + {( - 2i)}^{3} + {(2i)}^{6} + {(3 - 4i)}^{6} [/tex]
[tex] = {2}^{5} \times {i}^{5} + {( - 2)}^{3} \times {i}^{3} + {2}^{6} \times {i}^{6} + {[ {(3 -4i)}^{2} ]}^{3} [/tex]
[tex] = 32 \times {i}^{4} \times i - 8 \times ( - i) + 64 \times { ({i}^{2}) }^{3} + {( {3}^{2} - 2 \times 3 \times 4i + {(4i)}^{2} )}^{3} [/tex]
[tex] = 32 \times 1 \times i + 8i + 64 \times {( - 1)}^{3} + {(9 - 24i + {4}^{2} \times {i}^{2} ) }^{3} [/tex]
[tex] = 32i + 8i + 64 \times ( - 1) + {[9 - 24i + 16 \times ( - 1)]}^{3} [/tex]
[tex] = 40i - 64 + {(9 - 24i - 16)}^{3} [/tex]
[tex] = 40i - 64 + {( - 24i - 7)}^{3} [/tex]
[tex] = 40i - 64 + {( - 24i - 7)}^{2} \times ( - 24i - 7)[/tex]
[tex] = 40i - 64 + [ {( - 24i)}^{2} + 2 \times 24i \times 7 + {7}^{2} ]( - 24i - 7)[/tex]
[tex] = 40i - 64 + [ {( - 24)}^{2} \times {i}^{2} + 336i + 49]( - 24i - 7) [/tex]
[tex] = 40i - 64 + [576 \times ( - 1) + 336i + 49]( - 24i - 7) [/tex]
[tex] = 40i - 64 + ( - 576 + 336i + 49)( - 24i - 7) [/tex]
[tex] = 40i - 64 + (336i - 527)( - 24i - 7)[/tex]
[tex] = 40i - 64 + ( - 8064 {i}^{2} - 2352i + 12648i + 3689)[/tex]
[tex] = 40i - 64 + [ - 8064 \div ( - 1) + 10296i + 3689][/tex]
[tex] = 40i - 64 + 8064 + 10296i + 3689 [/tex]
[tex]= 10336i + 11689[/tex]
[tex] = {[ {(1 + i)}^{2} ]}^{5} + {[ {(1 - i)}^{2} ]}^{3} + {[ {(1 + i)}^{2} ]}^{6} + {[ {(2 - i)}^{2} ]}^{6} [/tex]
[tex] = {( {1}^{2} + 2 \times 1 \times i + {i}^{2}) }^{5} + {( {1}^{2} - 2 \times 1 \times i + {i}^{2} )}^{3} + {( {1}^{2} + 2 \times 1 \times i + {i}^{2}) }^{6} + {( {2}^{2} - 2 \times 2 \times i + {i}^{2}) }^{6} [/tex]
[tex] = {(1 + 2i - 1)}^{5} + {(1 - 2i - 1) }^{3} + {(1 + 2i - 1)}^{6} + {(4 - 4i - 1)}^{6} [/tex]
[tex] = {(2i)}^{5} + {( - 2i)}^{3} + {(2i)}^{6} + {(3 - 4i)}^{6} [/tex]
[tex] = {2}^{5} \times {i}^{5} + {( - 2)}^{3} \times {i}^{3} + {2}^{6} \times {i}^{6} + {[ {(3 -4i)}^{2} ]}^{3} [/tex]
[tex] = 32 \times {i}^{4} \times i - 8 \times ( - i) + 64 \times { ({i}^{2}) }^{3} + {( {3}^{2} - 2 \times 3 \times 4i + {(4i)}^{2} )}^{3} [/tex]
[tex] = 32 \times 1 \times i + 8i + 64 \times {( - 1)}^{3} + {(9 - 24i + {4}^{2} \times {i}^{2} ) }^{3} [/tex]
[tex] = 32i + 8i + 64 \times ( - 1) + {[9 - 24i + 16 \times ( - 1)]}^{3} [/tex]
[tex] = 40i - 64 + {(9 - 24i - 16)}^{3} [/tex]
[tex] = 40i - 64 + {( - 24i - 7)}^{3} [/tex]
[tex] = 40i - 64 + {( - 24i - 7)}^{2} \times ( - 24i - 7)[/tex]
[tex] = 40i - 64 + [ {( - 24i)}^{2} + 2 \times 24i \times 7 + {7}^{2} ]( - 24i - 7)[/tex]
[tex] = 40i - 64 + [ {( - 24)}^{2} \times {i}^{2} + 336i + 49]( - 24i - 7) [/tex]
[tex] = 40i - 64 + [576 \times ( - 1) + 336i + 49]( - 24i - 7) [/tex]
[tex] = 40i - 64 + ( - 576 + 336i + 49)( - 24i - 7) [/tex]
[tex] = 40i - 64 + (336i - 527)( - 24i - 7)[/tex]
[tex] = 40i - 64 + ( - 8064 {i}^{2} - 2352i + 12648i + 3689)[/tex]
[tex] = 40i - 64 + [ - 8064 \div ( - 1) + 10296i + 3689][/tex]
[tex] = 40i - 64 + 8064 + 10296i + 3689 [/tex]
[tex]= 10336i + 11689[/tex]