Răspuns :
(x+1)(y+3)=56
divizorii lui 56 sunt:1,2,4,7,8,14,28,56
56 poate fi produs compus din 56·1, 28·2, 14·4, 8·7 sau 1·56, 2·28, 4·14 si 7·8
(x + 1) = 1 si y + 3 = 56⇒ x = 0 ; y = 53
(x +1) = 2; y + 3 = 28⇒ x =1 si y = 25
(x +1) = 4; y + 3 = 14⇒ x = 3 si y = 11
(x +1) = 7; y + 3 = 8⇒ x = 6 si y =5
(x +1) = 8; y + 3 = 7⇒ x = 7 si y = 4
(x +1) = 14; y + 3 = 4⇒ x = 13 si y = 1
(x +1) = 28; y + 3 = 2⇒ x = 27 si y =-1 ∉N
(x +1) = 56; y + 3 = 1⇒ x = 55 si y =-2 ∉N
.............................
x = 0 ; x = 1 ; x = 3 ; x = 6 ; x = 7 ; x = 13
y = 53 ; y = 25 ; y = 11 ; y = 5 ; y = 4 ; y = 1
b) (x+4)(y+6)=48
divizorii lui 48 sunt {1, 2, 3, 4, 6, 8, 12, 16, 24 si 48}
48 poate fi produs compus din 48·1, 24·2, 16·3, 12·4 sau 8·6,
(x + 4) = 48 si y + 6 = 1⇒ x = 44 ; y = - 6∉N
(x + 4) = 24 si y + 6 = 2⇒ x = 20 ; y = - 4∉N
(x + 4) = 16 si y + 6 = 3⇒ x = 12 ; y = -3∉N
(x + 4) =12 si y + 6 = 4⇒ x = 8 ; y = - 2∉N
(x + 4) =8 si y + 6 = 6⇒ x = 4 ; y = 0
(x + 4) = 1 si y + 6 = 48⇒ x = -3∉N ; y =42
(x + 4) = 2 si y + 6 = 24⇒ x = -2 ∉N; y = 18
(x + 4) = 3 si y + 6 = 16⇒ x =-1∉N ; y = 10
(x + 4) =4 si y + 6 = 12⇒ x = 0 ; y = 6
(x + 4) =6 si y + 6 = 8⇒ x = 2 ; y = 2
b)
[tex]\it x,\ y\in\mathbb{N} \Rightarrow\begin{cases}\it x\geq0\Rightarrow x+4\geq4\\ \\ \it y\geq0\Rightarrow y+6\geq6\end{cases}\ \ (*)[/tex]
[tex]\it(x+4)(y+6)=48\ \stackrel{(*)}{=}\ 4 \cdot12=6\cdot8=8\cdot6\\ \\ x+4\in\{4,6,8\}|_{-4}\Rightarrow x\in\{0,\ 2,\ 4\}\\ \\ y+6\in\{12,8,6\}|_{-6}\Rightarrow y\in\{6,\ 2,\ 0\}\\ \\ (x,y)\in\{(0,\ 6),(2,\ 2),(4,\ 0)\}[/tex]