Răspuns :
[tex]\displaystyle In~primul~rand~conditia~\forall~x>0~poate~fi~inlocuita~cu~\forall~x \ge 0,~datorita \\ \\ continuitatii. \\ \\ Discutia~se~face~relativ~la~pozitia~varfului~fata~de~axa~Oy. \\ \\ V \left( - \frac{b}{2a}, - \frac{\Delta}{4a}\right)=V \left(m,-m^2+m+2 \right) \\ \\ i)~Daca~varful~se~afla~strict~in~stanga~axei~Oy,~adica~m<0,~atunci \\\\ functia~va~fi~strict~monotona~pe~(m, \infty),~deci~implicit~pe~[0,\infty).[/tex]
[tex]\displaystyle Si~pentru~ca~f'(x)=2x-2m \ge 0~\forall~x \ge 0,~ea~va~fi~crescatoare~pe~[0, \infty). \\ \\ Atunci~conditia~necesara~si~suficienta~pentru~f(x) \ge 0 ~\forall~x \ge 0~va~fi \\ \\ f(0) \ge 0 \Leftrightarrow m+2 \ge 0 \Leftrightarrow m \ge -2. \\ \\ Deci~in~acest~caz~avem~m \in [-2,0). \\ \\ ii)~Daca~varful~se~afla~in~dreapta~ axei~Oy,~adica~m \ge 0,~atunci \\ \\ minimul~pe~[0, \infty)~va~fi~chiar~minimul~pe~\mathbb{R},~anume~-m^2+m+2. \\ \\[/tex]
[tex]\displaystyle Se~impune~deci~-m^2+m+2 \ge 0 \Leftrightarrow m^2-m-2 \le 0 \Leftrightarrow \\ \\ (m+1)(m-2) \le 0~si~cum~m \ge 0,~va~rezulta~m-2 \le 0,~deci~m \le 2. \\ \\ Deci~in~acest~caz~avem~m \in [0,2]. \\ \\ Reunim~solutiile~din~fiecare~caz~si~obtinem~ca~raspunsul~este \\ \\ m \in [-2,2].[/tex]