👤
a fost răspuns

toate exercitiile va rog am lipsit la clasa si imi este foarte greu sa inteleg,trebuie sa le fac si pe nota

Toate Exercitiile Va Rog Am Lipsit La Clasa Si Imi Este Foarte Greu Sa Intelegtrebuie Sa Le Fac Si Pe Nota class=

Răspuns :

[tex]a) \frac{x + 1}{x - 1} + \frac{4}{ {x}^{2} - 1 } + \frac{1 - x}{x + 1} = \frac{x + 1}{x - 1} + \frac{4}{ {x}^{2} - {1}^{2} } + \frac{1 - x}{x + 1} = \frac{x + 1}{x - 1} + \frac{4}{(x + 1)(x - 1)} + \frac{1 - x}{x + 1} = \frac{(x + 1)(x + 1) + 4 + (1 - x)(x - 1)}{(x - 1)(x + 1)} = \frac{ {(x + 1)}^{2} + 4 + (1 - x)(x - 1) }{(x - 1)(x + 1)} = \frac{ {x}^{2} + 2x + 1 + 4 + x - 1 - {x}^{2} + x }{(x - 1)(x + 1)} = \frac{( {x}^{2} - {x}^{2}) + (2x + x + x) + (1 + 4 - 1) }{(x - 1)(x + 1)} = \frac{4x + 4}{(x - 1)(x + 1)} = \frac{4(x + 1)}{(x - 1)(x + 1)} = \frac{4}{x - 1} [/tex]

[tex]b) \frac{2x + 1}{x - 2} + \frac{1 - 2x}{x + 2} + \frac{ {x}^{2} + 16 }{ {x}^{2} - 4 } = \frac{2x + 1}{x - 2} + \frac{1 - 2x}{x + 2} + \frac{ {x}^{2} + 16 }{ {x}^{2} - {2}^{2} } = \frac{2x + 1}{x - 2} + \frac{1 - 2x}{x + 2} + \frac{ {x}^{2} + 16 }{(x + 2)(x - 2)} = \frac{(2x + 1)(x + 2) + (1 - 2x)(x - 2) + {x}^{2} + 16 }{(x - 2)(x + 2)} = \frac{ {2x}^{2} + 4x + x + 2 + x - 2 - {2x}^{2} + 4x + {x}^{2} + 16 }{(x - 2)(x + 2)} = \frac{( {2x}^{2} - {2x}^{2} + {x}^{2}) + (4x + x + x + 4x) + (2 - 2 + 16) }{(x - 2)(x + 2)} = \frac{ {x}^{2} + 10x + 16 }{(x - 2)(x + 2)} = \frac{(x + 2)(x + 8)}{(x - 2)(x + 2)} = \frac{x + 8}{x - 2} [/tex]

[tex]c) \frac{x - 2}{x + 1} + \frac{x + 3}{x + 2} + \frac{5 - {x}^{2} }{ {x}^{2} + 3x + 2 } = \frac{x - 2}{x + 1} + \frac{x + 3}{x + 2} + \frac{5 - {x}^{2} }{(x + 1)(x + 2)} = \frac{(x - 2)(x + 2) + (x + 3)(x + 1) + 5 - {x}^{2} }{(x + 1)(x + 2)} = \frac{ {x}^{2} - {2}^{2} + {x}^{2} + x + 3x + 3 + 5 - {x}^{2} }{(x + 1)(x + 2)} = \frac{ {x}^{2} - 4 + {x}^{2} + x + 3x + 3 + 5 - {x}^{2} }{(x + 1)(x + 2)} = \frac{( {x}^{2} + {x}^{2} - {x}^{2}) + ( - 4 + 3 + 5) + (x + 3x) }{(x + 1)(x + 2)} = \frac{ {x}^{2} + 4 + 4x }{(x + 1)(x + 2)} = \frac{ {x}^{2} + 4x + 4 }{(x + 1)(x + 2)} = \frac{ {(x + 2)}^{2} }{(x + 1)(x + 2)} = \frac{x + 2}{x + 1} [/tex]