[tex]a)a = {4}^{n} \times {3}^{2n + 1} - {2}^{2n} \times {9}^{n} [/tex]
[tex]a = {2}^{2n} \times {3}^{2n + 1} - {2}^{2n} \times {3}^{2n} [/tex]
[tex]a = {2}^{2n} \times {3}^{2n} (3 - 1)[/tex]
[tex]a = {2}^{2n} \times {3}^{2n} \times 2[/tex]
[tex]a = {2}^{2n + 1} \times {3}^{2n} [/tex]
[tex]b)2a = 2 \times {2}^{2n + 1} \times {3}^{2n} [/tex]
[tex]2a = {2}^{2n + 1 + 1} \times {3}^{2n} [/tex]
[tex]2a = {2}^{2n + 2} \times {3}^{2n} [/tex]
[tex]2a = {2}^{2(n + 1)} \times {3}^{2n} [/tex]
[tex]2a = { ({2}^{n + 1}) }^{2} \times { ({3}^{n} )}^{2} [/tex]
[tex]2a = { ({2}^{n + 1} \times {3}^{n} ) }^{2} =>p.p[/tex]