👤
a fost răspuns

Demonstrati ca numarul n= 6√12:√3-√3·Ι 4√3-6 Ι-√108 este natural
VA ROGGGG URGENTTT 50 PUNCTE


Răspuns :

Răspuns


Explicație pas cu pas:

6√12:√3-√3·Ι 4√3-6 Ι-√108  =

6√4×√3 : √3 - √3×4√3 + 6√3 - √36×√3 =

12 - 12 + 6√3 - 6√3 =  0

[tex]n = 6 \sqrt{12} : \sqrt{3} - \sqrt{3} \times |4 - 3 \sqrt{6} | - \sqrt{108} \\ \\ n = 6 \times 2 \sqrt{3} : \sqrt{3} - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = 12 \sqrt{3} : \sqrt{3} - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = 12 \sqrt{3} \times \frac{1}{ \sqrt{3} } - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = \frac{12 \sqrt{3} \sqrt{3} }{3} - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = \frac{12 \sqrt{9} }{3} - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = \frac{12 \times 3}{3} - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = \frac{36}{3} - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = 12 - \sqrt{3}(4 \sqrt{3} - 6) - 6 \sqrt{3} \\ \\ n = 12 - 12 + 6 \sqrt{3} - 6 \sqrt{3} \\ \\ n = 6 \sqrt{3} - 6 \sqrt{3} [/tex]

n=0 € N