Răspuns :
E(x)=x^4-1+(x^2+1)^2 pentru x=√3
[tex]\it E(x)=x^4-1+(x^2+1)^2=(x^2)^2-1^2 +(x^2+1)^2 =\\ \\ =(x^2-1)(x^2+1)+(x^2+1)(x^2+1)=(x^2+1)(x^2-1+x^2+1)=\\ \\ =(x^2+1)\cdot2x^2[/tex]
[tex]\it E(\sqrt3)=[(\sqrt3)^2+1]\cdot2(\sqrt3)^2=(3+1)\cdot2\cdot3=\\ \\ =4\cdot2\cdot3=24[/tex]
E(√3) = [tex]\sqrt{3} ^{4}[/tex]-1+(√3²+1)² = 3²-1+(3+1)² = 9-1+4² = 8+16 = 24 ;