Răspuns :
AB²=(2-5)²+(0-4)²=(-3)²+(-4)²=9+16=25
AC²=(2-(-2))²+(0-3)²=(2+2)²+9==16+9=25
BC²=(5-(-2))²+(4-3)²=(5+2)²+1=49+1=50
25+25=50
BC²=AB²+BC²
Triunghiul este dreptunghic
[tex]A(2,0)[/tex]
[tex]B(5,4)[/tex]
[tex]C(-2,3)[/tex]
[tex]AB=\sqrt{{(x_{B}-x_{A})}^{2}+{(y_{B}-y_{A})}^{2}}[/tex]
[tex]AB=\sqrt{{(5-2)}^{2}+{(4-0)}^{2}}[/tex]
[tex]AB=\sqrt{{3}^{2}+{4}^{2}}[/tex]
[tex]AB=\sqrt{9+16}[/tex]
[tex]AB=\sqrt{25}[/tex]
[tex]AB=5[/tex]
[tex]AC=\sqrt{{(x_{C}-x_{A})}^{2}+{(y_{C}-y_{A})}^{2}}[/tex]
[tex]AC=\sqrt{{( - 2-2)}^{2}+{(3-0)}^{2}}[/tex]
[tex]AC=\sqrt{{( - 4)}^{2}+{3}^{2}}[/tex]
[tex]AC=\sqrt{16+9}[/tex]
[tex]AC= \sqrt{25} [/tex]
[tex]AC=5[/tex]
[tex]BC=\sqrt{{(x_{C}-x_{B})}^{2}+{(y_{C}-y_{B})}^{2}}[/tex]
[tex]BC=\sqrt{{( - 2-5)}^{2}+{(3-4)}^{2}}[/tex]
[tex]BC=\sqrt{{( - 7)}^{2}+{( - 1)}^{2}}[/tex]
[tex]BC=\sqrt{49+1}[/tex]
[tex]BC = \sqrt{50} [/tex]
[tex]BC = 5 \sqrt{2} [/tex]
[tex] {AB}^{2}+{AC}^{2}={BC}^{2}[/tex]
[tex] {5}^{2} + {5}^{2} = {(5 \sqrt{2}) }^{2} [/tex]
[tex]25 + 25 = 50[/tex]
[tex]50 = 50 \: (A)[/tex]
[tex] = > \Delta \: ABC \: dreptunghic[/tex]
[tex] AB = AC = 5 = > \Delta \: ABC \: dreptunghic \: isoscel[/tex]
[tex]B(5,4)[/tex]
[tex]C(-2,3)[/tex]
[tex]AB=\sqrt{{(x_{B}-x_{A})}^{2}+{(y_{B}-y_{A})}^{2}}[/tex]
[tex]AB=\sqrt{{(5-2)}^{2}+{(4-0)}^{2}}[/tex]
[tex]AB=\sqrt{{3}^{2}+{4}^{2}}[/tex]
[tex]AB=\sqrt{9+16}[/tex]
[tex]AB=\sqrt{25}[/tex]
[tex]AB=5[/tex]
[tex]AC=\sqrt{{(x_{C}-x_{A})}^{2}+{(y_{C}-y_{A})}^{2}}[/tex]
[tex]AC=\sqrt{{( - 2-2)}^{2}+{(3-0)}^{2}}[/tex]
[tex]AC=\sqrt{{( - 4)}^{2}+{3}^{2}}[/tex]
[tex]AC=\sqrt{16+9}[/tex]
[tex]AC= \sqrt{25} [/tex]
[tex]AC=5[/tex]
[tex]BC=\sqrt{{(x_{C}-x_{B})}^{2}+{(y_{C}-y_{B})}^{2}}[/tex]
[tex]BC=\sqrt{{( - 2-5)}^{2}+{(3-4)}^{2}}[/tex]
[tex]BC=\sqrt{{( - 7)}^{2}+{( - 1)}^{2}}[/tex]
[tex]BC=\sqrt{49+1}[/tex]
[tex]BC = \sqrt{50} [/tex]
[tex]BC = 5 \sqrt{2} [/tex]
[tex] {AB}^{2}+{AC}^{2}={BC}^{2}[/tex]
[tex] {5}^{2} + {5}^{2} = {(5 \sqrt{2}) }^{2} [/tex]
[tex]25 + 25 = 50[/tex]
[tex]50 = 50 \: (A)[/tex]
[tex] = > \Delta \: ABC \: dreptunghic[/tex]
[tex] AB = AC = 5 = > \Delta \: ABC \: dreptunghic \: isoscel[/tex]