9. d
2^202(1+2+2^2)=2^202*7 comparat cu 7 ^304
impart prin 7
compar 2^202 cu 7^303
(2^2)^101 cu (7^3)^101
2^2<7^3 rezulta ca primul e mai mic
2^100-2^99=2^99*2-2^99=2^99
2^99-2^98=2^98
2^(n+1)-2^n=2^n pentru orice n
------------------------
2^3-2^2=2^2
2^2-2=2
2-1=1
rezulta ca a doua paranteza este egala cu 1
A=43^2011:(43^2)^1005=43^2011:43^2010=43^(2011-2010)=43
14. A= 2^(1+2+...+99)*26=2^ (99*100/2)*26=2^4950*26
B= 3^3301*(3-1)+21*(3^2)^1650=3^3301*2+21*3^3300
=3^3300*3*2+ 21*3^3300=3^3300*(6+21)=3^3300*27
A= (2^3)^1650*26
B= (3^2)*1650*27
3^2>2^3 rezulta ca B>A