Răspuns :
[tex] \star) {(x - 3)}^{2} = {x}^{2} - 2 \times x \times 3 + {3}^{2} [/tex]
[tex] = {x}^{2} - 6x + 9[/tex]
[tex]={x}^{2}-3(2x-3)[/tex]
[tex] \star) {(4x + 1)}^{2} = {(4x)}^{2} + 2 \times 4x \times 1 + {1}^{2} [/tex]
[tex] = 16 {x}^{2} + 8x + 1[/tex]
[tex] = 8(2 {x}^{2} + x) + 1[/tex]
[tex] \star)(3x - 4)(3x + 4) = {(3x)}^{2} - {4}^{2} [/tex]
[tex] = 9 {x}^{2} - 16[/tex]
Formule :
[tex] {(a \pm b)}^{2} = {a}^{2} \pm2ab + {b}^{2} [/tex]
[tex](a - b)(a + b) = {a}^{2} - {b}^{2} [/tex]
[tex] = {x}^{2} - 6x + 9[/tex]
[tex]={x}^{2}-3(2x-3)[/tex]
[tex] \star) {(4x + 1)}^{2} = {(4x)}^{2} + 2 \times 4x \times 1 + {1}^{2} [/tex]
[tex] = 16 {x}^{2} + 8x + 1[/tex]
[tex] = 8(2 {x}^{2} + x) + 1[/tex]
[tex] \star)(3x - 4)(3x + 4) = {(3x)}^{2} - {4}^{2} [/tex]
[tex] = 9 {x}^{2} - 16[/tex]
Formule :
[tex] {(a \pm b)}^{2} = {a}^{2} \pm2ab + {b}^{2} [/tex]
[tex](a - b)(a + b) = {a}^{2} - {b}^{2} [/tex]