doua unghiuri sunt complementare daca au impreuna 90 de grade
notam x masura unghiului si y complementul sau si avem
x = 20% din y
rezulta x = 20/100 din y
cum x + y = 90 (deoarece sunt complementare) rezulta
20/100 *y + y = 90 inmultim relatia obtinuta cu 100 pt a scapa de numitor si obtinem 20y + 100y = 9 000, de unde 120y = 9 000
y = 9 000/120 = 75 de grade
x = 90 - 75 = 25 de grade
problema 2
m(∡AOB) + m(∡BOC) = 90 grade
notez m(∡AOB) = x si m(∡BOC) = y
stim ca m(∡AOB) = 50 + y/3, atunci avem x + y = 90 grade
adica 50 + y/3 + y = 90 , inmultim relatia data cu 3 pt a scapa de numitor si obtinem 150 + y + 3y = 270
adica vom avea 4y + 150 = 270 ⇒4y = 270-150 ⇒ 4y = 120 grade
deci y = 120/4 = 30 grade, adica m(∡BOC) = y = 30 grade, iar
m(∡AOB) = 50 + y/3 = 50 + 30/3 = 50 + 10 = 60 grade