[tex]2^{41};(2^{2})^{21}=2^{2\cdot21}=2^{42};(2^{4})^{11}=2^{4\cdot11}=2^{44}\\ \\2^{41}<2^{42}<2^{44}\\ \\2^{41}<4^{21}<16^{11}[/tex]
[tex]25^{17}=(5^{2})^{17}=5^{2\cdot17)}=5^{34} \\ \\5^{33}=\\ \\ 125^{12}=(5^{3})^{12}=5^({3\cdot12)}=5^{36} \\ \\5^{33}<5^{34}<5^{36} \\ \\5^{33}<25^{17}<125^{12}[/tex]