[tex]\it \dfrac{1}{1\cdot2} +\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\ ...\ +\dfrac{1}{2012\cdot2013} =\\ \\ \\=\dfrac{1}{1}-\dfrac{1}{2} +\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\ ...\ +\dfrac{1}{2012}-\dfrac{1}{2013}=1-\dfrac{1}{2013}=\dfrac{2012}{2013}[/tex]
Expresia devine:
[tex]\it 2013\cdot\dfrac{1}{2012}\cdot\dfrac{2012}{2013}-1=1-1=0[/tex]