Răspuns :
[tex]S = 2 + 4 + 6 + ... + 108[/tex]
[tex]S = 2(1 + 2 + 3 + ... + 54)[/tex]
[tex]S = 2 \times \frac{54(54 + 1)}{2} [/tex]
[tex]S = 54(54 + 1)[/tex]
[tex]S = 54 \times 55[/tex]
[tex]S = 2970[/tex]
[tex]Formul \check{a} \: : \: 1 + 2 + 3 + ... + n = \frac{n(n + 1)}{2} [/tex]
[tex]S = 2(1 + 2 + 3 + ... + 54)[/tex]
[tex]S = 2 \times \frac{54(54 + 1)}{2} [/tex]
[tex]S = 54(54 + 1)[/tex]
[tex]S = 54 \times 55[/tex]
[tex]S = 2970[/tex]
[tex]Formul \check{a} \: : \: 1 + 2 + 3 + ... + n = \frac{n(n + 1)}{2} [/tex]
Folosim formula lui Gauss
1 + 2 + ... + n = n (n + 1) : 2
S = 2 + 4 + .. + 108
S = 2(1 + 2 + .. + 54)
S = 2(54*55 : 2)
S = 54*55
S = 2970