👤

Fie E(x)=([tex] \frac{ x^{2}-4 }{ x^{2} -9} [/tex]-1):([tex] \frac{1}{x-3} [/tex]+[tex] \frac{1}{x+3} [/tex]-[tex] \frac{1}{ x^{2} -9} [/tex]),unde x∈R\{-3;[tex] \frac{1}{2} [/tex];3}.
a)Aratati ca E(x) =[tex] \frac{5}{2x-1} [/tex],oricare ar fi x ∈\{-3;[tex] \frac{1}{2} [/tex];3}
b)Determinati numerele reale x pentru care E(x)≤0.


Răspuns :

[tex]a) E(x)=( \frac{ x^{2} -4}{ x^{2} -9} - \frac{ x^{2} -9}{ x^{2} -9}):( \frac{x+3}{(x+3)(x-3)}+ \frac{x-3}{(x+3)(x-3)}- \frac{1}{(x+3)(x-3)})= \\ = \frac{ x^{2} -4- x^{2} +9}{ x^{2} -9} : \frac{x+3+x-3-1}{(x+3)(x-3)} = \\ = \frac{5}{(x+3)(x-3)}: \frac{2x-1}{(x+3)(x-3)}= \\ = \frac{5}{(x+3)(x-3)}* \frac{(x+3)(x-3)}{2x-1}= \\ = \frac{5}{2x-1} [/tex]

b) Pentru ca E(x) â‰¤ 0 este suficient ca 2x-1 â‰¤ 0.

2x-1 â‰¤ 0 => 2x â‰¤ 1 => [tex]x \leq \frac{1}{2} [/tex]. Deci x∈(-∞;[tex] \frac{1}{2} [/tex]).