5.
Într-un triunghi dreptunghic, lungimea înălțimii corespunzătoare ipotenuzei este media geometrică a lungimilor proiecțiilor catetelor pe ipotenuza
h² = c₁ × c₂ ⇒ h =√(0,75 × 3) = √2,25 = 1,5 cm
deci inaltimea unui triunghi care are proiectiile catetelor pe ipotenuza de lungimi 0.75 si 3 cm este de 1, 5 cm
6.
a/sin A =b/sin B = c /sin C =2R
a/sin A = 2R unde a este ipotenuza iar sin A = sin 90 =1
R = a / ( 2 × sin A) = a /2
deci R = ipotenuza /2
ipotenuza se afla cu Teorema lui Pitagora
ip² = c₁² + c₂ ²
ip²= 0.75² + 3²⇒ip² = 0.5625 + 9⇒ip² = √(9,5625)
ip = 3,092 cm
deci R = ipotenuza /2 = 3,092 /2 = 1,54616 cm