1. a = 5^2020 + 1 × 2 × 3 ×...× 2019 + 2 × 3
U(5^2020) = U(5^4) = U(625) = 5
sau se stie ca 5 la orice putere are ultima cifra intotdeauna 5 .
U(1 × 2 × 3 × 4 × 5 × ... × 2019 ) = 0
deoarece 4 × 5 = 20; 2 × 5 = 0
deci, produsul se termina in cel putin un 0
U(a) = U(5 + 0 + 6) = U(11) = 1
2. a - b = 24
a : b = 3 rest 2 ==> a = 3×b + 2
inlocuim in prima relatie, pe a
3×b + 2 - b = 24
2×b = 24 - 2
2×b = 22
b = 11 (al 2-lea numar)
a = 24 + 11 = 35 (primul numar)
Verificam:
35 - 11 = 24
35 : 11 = 3 rest 2