👤
a fost răspuns

Triunghiul ABC dreptunghic în A. AD perpendicular BC, M mijlocul lui BC, tg de C=3/4,AC=24cm.Intrebari:AB, BC, AM, BD, DC, DM=?, Aria ADM=?, Cât % reprezinta Aria ADM din Aria ABC??

Dau coroana!!!


Răspuns :

tgc=3/4⇔ab/ac=3/2

dar ac=24 din astea doua=>ab/24=3/4=>ab=24×3/4=>ab=6×3=>ab=18

bc²=ab²+ac²

bc²=18²+24²

bc²=324+576

bc²=900=>bc=√900=>bc=30

daca m mijlocullui bc si ∡a=90°=>am este mediana intr-un tiunghi dreptunghic=>am=1/2bc=>am=30/2=>am=15

aplicam teorema catetei:

ab²=bd x bc

18²=bd×30

324=bd×30=>bd=324/30(simplific cu 2)=>bd=162/15 (simplific cu 3)=>bd=54/5

ac²=cd × bc

24²= cd × 30

576=cd ×30=>cd=576/30 (simplific cu 3)=>cd=192/10 (simplific cu 2)=> cd=96/5


aplic teorema inaltimii

ad²=cd × db

ad²=96/5 × 54/5

ad²=5184/25=>ad=√5184/25=>ad=72/5

in Δadm:

ad²+dm²=am²

(72/5)²+dm²=15²

dm²=225-5184/25

dm²=225×25/25-5184/25

dm²=5626/25-5184/25

dm²=441/25=>dm=√441/25=>dm=21/5


aria Δabc=(ad ×bc)/2=(72/5 ×30)/2=(72 ×6)/2=72×3=216cm²

ariaΔadm=?

inΔadm duc dx⊥am unde x∈am

aplic teorema catetei

ad²=ax ori am

(72/5)²=ax ori 15

5184/25=ax ori 15=>ax=5184/25:15=>ax=5184/25 ori 1/15=ax=5184/375 care se simplifica cu 3=>ax=1728/125

ax+xm=am

1728/125+xm=15

xm=15-1728/125

xm=15 ori 125/125-1728/125

xm=1875/125-1728/125

xm=147/125

aplic teorema inaltimii

dx²=ax ori xm

dx²=1728/125×147/125

dx²=254016/125²

dx²=√254016/125²

dx=504/125

arie Δadm=dx ori am/2=(504/125 ori 15)/2=(504/25 ori 3)/2=1512/25/2=1512/25 ori1/2=756/25=30,24 cm²

daca aria abc=216 cm² si aria adm=30,2 cm²=> ...de aici chiar ca nu mai stiu...

dar vezi daca te ajuta ce am rezolvat..daca nu sterge

Vezi imaginea Lonely11
Ai răspuns pe foaie.
Vezi imaginea Iakabcristina2