👤
a fost răspuns

Calculati raza cercului circumscris triunghiului ABC cu m(<A) =45° si m(<B) =30° iar AB=4.

Răspuns :

[tex] \it m(\hat{C}) = 180^o-(45^o+30^o) = 105^o
\\ \\ \\
Th. \ sinusurilor \ \Rightarrow \dfrac{c}{sinC}=2R \Rightarrow \dfrac{4}{sin105^o} = 2R|_{:2} \Rightarrow
\\ \\ \\
\Rightarrow R=\dfrac{2}{sin105^o} \qquad (1)
\\ \\ \\
sin105^o = sin(180^o-105^o) =sin75^o = sin(45^o+30^o) =
\\ \\ \\
= sin45^ocos30^o+sin30^ocos45^o = \dfrac{\sqrt2}{2}\cdot \dfrac{\sqrt3}{2} + \dfrac{1}{2}\cdot \dfrac{\sqrt2}{2} =
\\ \\ \\
=\dfrac{\sqrt6+\sqrt2}{4} \qquad (2) [/tex]

[tex] \it (1),\ (2) \Rightarrow R=\dfrac{2}{\dfrac{\sqrt6+\sqrt2}{4}} =2\cdot \dfrac{4} {\sqrt6+\sqrt2} =\dfrac{ 2\cdot4\cdot(\sqrt6-\sqrt2)}{4} =
\\ \\ \\
= 2(\sqrt6-\sqrt2) [/tex]