Răspuns :
[tex]\displaystyle\\\bf\\ z_1=1-m+i\\ z_2=m+1-2mi\\\\ z_1\cdot z_2=(1-m+i)(m+1-2mi)=\\ =m-m^2+mi+1-m+i-2mi+2m^2i-2mi^2=~~(dar~i^2=-1)\\ =m-m^2+mi+1-m+i-2mi+2m^2i+2m=\\ =-m^2+2m+1-mi+i+2m^2i=\\ = -m^2+2m+1+(2m^2-m+1)\cdot i\\\\ z_1\cdot z_2=-m^2+2m+1+(2m^2-m+1)\cdot i\\\\ z_1\cdot z_2\in R~~daca~~(2m^2-m+1)=0\\ ~~~~~~unde~~~(2m^2-m+1)~este~coeficientul~lui~i.\\\\ Rezolvam~ecuatia:\\\\ 2m^2-m+1=0\\ \Delta=(-1)^2-4\cdot 2\cdot 1 = 1 - 9 = -8\\ \Delta\ \textless \ 0\\ \Rightarrow~m\notin R \\ m \in \Phi[/tex]
⇒ Nu exista nicio valoare reala pentru m astfel incat z₁·z₂ ∈ R.