👤
Eduard222
a fost răspuns

Sa se afle aria triunghiului ABC daca b=2rad6,a+c=6+rad12 si m(B)=pi/3.

Răspuns :


[tex] \it a+c = 6+\sqrt{12} \Rightarrow (a+c)^2 = (6+\sqrt{12})^2 \Rightarrow
\\ \\
\Rightarrow a^2+c^2+2ac =36+12+12\sqrt{12} \Rightarrow
\\ \\
\Rightarrow a^2+c^2= 48+12\sqrt{12} -2ac \ \ \ \ \ (1) [/tex]



Aplicăm teorema cosinusului pentru unghiul B:


[tex] \it cos \dfrac{\pi}{3} = \dfrac{a^2+c^2-(2\sqrt6)^2}{2ac} \Rightarrow \dfrac{1}{2} = \dfrac{a^2+c^2-24}{2ac}|_{\cdot2ac} \Rightarrow
\\ \\ \\
\Rightarrow ac = a^2+c^2 -24 \Rightarrow a^2+c^2=ac+24 \ \ \ \ \ (2)
\\ \\ \\
(1), (2) \Rightarrow ac+24 = 48+12\sqrt{12} -2ac \Rightarrow 3ac = 24+12\sqrt{12} |_{:6} \Rightarrow
\\ \\ \\
\Rightarrow \dfrac{ac}{2} = 4+2\sqrt{12} \ \ \ \ \ (3) [/tex]


[tex] \it \mathcal{A} = \dfrac{ac}{2} \cdot sinB \stackrel{(3)}{\Longrightarrow} \mathcal{A} = (4+2\sqrt{12})\cdot sin\dfrac{\pi}{3} = (4+2\sqrt{12})\cdot \dfrac{\sqrt3}{2} =
\\ \\ \\
= 4\cdot\dfrac{\sqrt3}{2} +2\sqrt{12} \cdot\dfrac{\sqrt3}{2} = 2\sqrt3+\sqrt{36} =2\sqrt3+6 [/tex]