Răspuns :
Formula este :
_____________________________________________________________
n(n+1):2
_____________________________________________________________
Rezolvare :
1+2+3+..........+9 = 9(9+1):2 = 9*10 : 2 = 90 :2 = 45
_____________________________________________________________
Metoda 2 :
_____________________________________________________________
Formulă :
(primul număr + ultimul număr ) × numărul lor : 2
_____________________________________________________________
1 + 2 + 3 + ............... + 9 = (1+9) × 9 : 2 = 10 × 9 : 2 = 90 : 2 = 45
____________________________________________________________
Succes !
_____________________________________________________________
n(n+1):2
_____________________________________________________________
Rezolvare :
1+2+3+..........+9 = 9(9+1):2 = 9*10 : 2 = 90 :2 = 45
_____________________________________________________________
Metoda 2 :
_____________________________________________________________
Formulă :
(primul număr + ultimul număr ) × numărul lor : 2
_____________________________________________________________
1 + 2 + 3 + ............... + 9 = (1+9) × 9 : 2 = 10 × 9 : 2 = 90 : 2 = 45
____________________________________________________________
Succes !
1 + 2 + 3 +........+ 9 = 9 × ( 1 + 9 ) : 2 = 9 × 10 : 2 = 90 : 2 = 45
→am aplicat formula sumei lui Gauss pentru a afla suma celor 9 numere ( termeni) consecutive
→ observ ca suma are 9 termeni ( , 1, 2, 3, 4, .......9) ;
→ inmultesc numarul termenilor ( 9) cu suma dintre primul termen si ultimul termen al sumei, adica 1 + 9 = 10
→ impart produsul obtinut la 2
Iata o alta modalitate de aflarea a sumei
S = 1 + 2 + 3 +.............+ 9
S = 9 + 8 + 7 +............ +1
______________________
2 × S = 10 + 10 + 10 +..........+ 10 = 10 × 9 ( am inmultit cu 9, deoarece suma are 9 termeni )
2 × S = 90
S = 90 : 2
S = 45 → suma primelor 9 numere consecutive
sau: ( daca este o suma cu mai putin termeni)
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
= ( 1 + 9) + ( 2 + 8 ) + ( 3 + 7) + ( 4 + 6 ) + 5 =
= 4 × 10 + 5 = 45
→am aplicat formula sumei lui Gauss pentru a afla suma celor 9 numere ( termeni) consecutive
→ observ ca suma are 9 termeni ( , 1, 2, 3, 4, .......9) ;
→ inmultesc numarul termenilor ( 9) cu suma dintre primul termen si ultimul termen al sumei, adica 1 + 9 = 10
→ impart produsul obtinut la 2
Iata o alta modalitate de aflarea a sumei
S = 1 + 2 + 3 +.............+ 9
S = 9 + 8 + 7 +............ +1
______________________
2 × S = 10 + 10 + 10 +..........+ 10 = 10 × 9 ( am inmultit cu 9, deoarece suma are 9 termeni )
2 × S = 90
S = 90 : 2
S = 45 → suma primelor 9 numere consecutive
sau: ( daca este o suma cu mai putin termeni)
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
= ( 1 + 9) + ( 2 + 8 ) + ( 3 + 7) + ( 4 + 6 ) + 5 =
= 4 × 10 + 5 = 45