Răspuns :
Tg30ctg60+tg60ctg30=10/3
tg 30 = √3/3
ctg60 = √3/3
tg60 = √3
ctg30 = √3
Tg30ctg60+tg60ctg30=√3/3·√3/3 + √3·√3 = 3/9 +3 = 30/9 = 10/3 - A
tg 30 = √3/3
ctg60 = √3/3
tg60 = √3
ctg30 = √3
Tg30ctg60+tg60ctg30=√3/3·√3/3 + √3·√3 = 3/9 +3 = 30/9 = 10/3 - A
sin30=cos60=1/2
cos30=sin60=√3/2
E=sin30/cos30*cos60/sin60+sin60/cos60*cos30/sin30=cos60/sin60*cos60/sin60+sin60/cos60*sin60/cos60=(cos60/sin60)^2+(sin60/cos60)^2=(1/√3)^2+(√3)^2=1/3+3=10/3
cos30=sin60=√3/2
E=sin30/cos30*cos60/sin60+sin60/cos60*cos30/sin30=cos60/sin60*cos60/sin60+sin60/cos60*sin60/cos60=(cos60/sin60)^2+(sin60/cos60)^2=(1/√3)^2+(√3)^2=1/3+3=10/3