Răspuns :
√(3+2√2) - √(3-2√2)=√(√2²+2√2+1) - √(√2²-2√2+1)
=√(√2+1)²-√(√2-1)²=√2+1-√2+1=2, ∈N
=√(√2+1)²-√(√2-1)²=√2+1-√2+1=2, ∈N
[tex] \sqrt{3+2\sqrt2} - \sqrt{3-2\sqrt2} = \\ \\ = \sqrt{(\sqrt{2}+1})^2} - \sqrt{(\sqrt 2 - 1)^2} = \\ \\ = |\sqrt 2 +1| - |\sqrt 2 -1| = \sqrt 2 - 1 - (\sqrt 2 - 1) = \\ \\ = \sqrt 2 +1 - \sqrt 2 + 1 = 2 \in \mathbb{N} [/tex]