a)
diagonala cub, B'D=l√3=2√6 cm
b)
in tr. BB'C' , MN este linie mijlocie ⇒ MN║BC'║AD'
AD'∈(ADD'A') ⇒ MN║(A'AD)
c)
(D'AC)∩(MAC)=AC
tr. AD'C este isoscel ⇒ D'O este mediana si inaltime ⇒ D'O⊥AC (1)
tr. MAC este isoscel ⇒ MO este mediana si inaltime ⇒ MO⊥AC (2)
din (1) si (2) rezulta:
m∡((D'AC);(MAC))=m∡MOD'
cu pitagora in DOD' ⇒ D'O=2√3 cm
cu pitagora in MB'D' ⇒ D'M=3√2 cm
in tr. BDB', OM este linie mijlocie ⇒ OM=DB'/2=√6 cm
din rezultatele obtinute rezulta ca tr. MOD' este dreptunghic in O
rezulta m∡MOD'=90°