Răspuns :
(a+ b/3) +(b+a/3) =280
b=2/5×a =2a/5
(a+(2a/5)/3)+(2a/5+a/3)=280
(a+2a/15)+(2a/5+a/3)=280
(15a+2a) /15+(6a+5a) /15=280
17a/15+11a/15 =280
28a/15=280
a =280:28/15
a=280×15/28
a=150
b= (2×150)/5=60
a+b=150+60 = 210
b=2/5×a =2a/5
(a+(2a/5)/3)+(2a/5+a/3)=280
(a+2a/15)+(2a/5+a/3)=280
(15a+2a) /15+(6a+5a) /15=280
17a/15+11a/15 =280
28a/15=280
a =280:28/15
a=280×15/28
a=150
b= (2×150)/5=60
a+b=150+60 = 210
Fie a si b cele 2 numere
b = 2 / 5 din a
( a + b / 3 ) + ( b + a / 3 ) = 280
( a + 2 a / 5 /3 ) + ( 2 a / 5 + a / 3) = 280
a + 2 a / 15 + 2 a / 5 + a / 3 = 280 → le aduc la acelasi numitor comun 15
15 a + 2 a + 6 a + 5 a = 15 × 280
28 a = 15 × 280 l : 28
a = 150 → primul numar
b = 2 / 5 din 150 ⇒ b = 150 : 5 × 2 = 30 × 2 = 60 → al doilea nr.
Verific:
( 150 + 60 : 3 ) + ( 60 + 150 : 3 ) = ( 150 + 20 ) + ( 60 + 50) = 170 + 110 = 280
b = 2 / 5 din a
( a + b / 3 ) + ( b + a / 3 ) = 280
( a + 2 a / 5 /3 ) + ( 2 a / 5 + a / 3) = 280
a + 2 a / 15 + 2 a / 5 + a / 3 = 280 → le aduc la acelasi numitor comun 15
15 a + 2 a + 6 a + 5 a = 15 × 280
28 a = 15 × 280 l : 28
a = 150 → primul numar
b = 2 / 5 din 150 ⇒ b = 150 : 5 × 2 = 30 × 2 = 60 → al doilea nr.
Verific:
( 150 + 60 : 3 ) + ( 60 + 150 : 3 ) = ( 150 + 20 ) + ( 60 + 50) = 170 + 110 = 280