Răspuns :
[tex]3(2x - 6) = 7x - 3 \\ 6x - 18 = 7x - 3 \\ x = - 15[/tex]
[tex]3(x - 4) = 5(x - 2) \\ 3x - 12 = 5x - 10 \\ 2x = - 2 \\ x = - 1[/tex]
[tex]2(2x - 4) - 11 = 3(3x + 2) \\ 4x - 8 - 11 = 9x + 6 \\ 4x - 19 = 9x + 6 \\ 5x = - 25 \\ x = - 5[/tex]
[tex] \sqrt{121} - 3x = - 7 x - \sqrt{81} \\ 11 - 3x = - 7x - 9 \\ 7x - 3x = - 9 \times 11 \\ 4x = - 20 \\ x = - 5[/tex]
[tex]10x + \sqrt{225} \geqslant \sqrt{64} x + \sqrt{361} \\ 10x + 15 \geqslant 8x + 19 \\ 2x \geqslant 4 \\ x \geqslant 2 \\ x = [2 ;\: + \infty )[/tex]
[tex] - \sqrt{25}x + 2 < 6x + \sqrt{169} \\ - 5x + 2 < 6x + 13 \\ 11x > - 11 \\ x > - 1 \\ x = (- 1 ;\: + \infty )[/tex]
[tex]3(x - 4) = 5(x - 2) \\ 3x - 12 = 5x - 10 \\ 2x = - 2 \\ x = - 1[/tex]
[tex]2(2x - 4) - 11 = 3(3x + 2) \\ 4x - 8 - 11 = 9x + 6 \\ 4x - 19 = 9x + 6 \\ 5x = - 25 \\ x = - 5[/tex]
[tex] \sqrt{121} - 3x = - 7 x - \sqrt{81} \\ 11 - 3x = - 7x - 9 \\ 7x - 3x = - 9 \times 11 \\ 4x = - 20 \\ x = - 5[/tex]
[tex]10x + \sqrt{225} \geqslant \sqrt{64} x + \sqrt{361} \\ 10x + 15 \geqslant 8x + 19 \\ 2x \geqslant 4 \\ x \geqslant 2 \\ x = [2 ;\: + \infty )[/tex]
[tex] - \sqrt{25}x + 2 < 6x + \sqrt{169} \\ - 5x + 2 < 6x + 13 \\ 11x > - 11 \\ x > - 1 \\ x = (- 1 ;\: + \infty )[/tex]