[tex]f:\mathbb{R}\rightarrow \mathbb{R},f(x)=3x-x^3\\
f'(x)=3-3x^2\\
f'(x)=0\\
3-3x^2=0\\
3x^2=3\\
x^2=1\Rightarrow x\in \{\pm 1\}\\
f(1)=2\\
f(-1)=-2\\
\displaystyle\limit \lim_{x\to -\infty} f(x)=\infty \\
\limit \lim_{x\to \infty} f(x)=-\infty\\
\text{Dupa ce faci un tabel iti va da }\\
Pt.\ x\in(-\infty,-1),f(x)-\text{descrescatoare}\\
Pt\ x\in[-1,1) ,f(x)- \text{crescatoare}\\
Pt\ x\in[1,\infty),f(x)-\text{descrescatoare} [/tex]