Răspuns :
[x^2014 - 2014(x-1)]’
(x^2014)’-2014x+2014
2014x^2013 - (2014x)’ + 2014’
2014x^2013-2014+o
deoare (2014x)’=2014 ori 1
iar 2014’= 0
f(x) = x^2014 -2014x +2014
f' = (x^2014)' -(2014x)' +(2014)' = 2014*x^2013 -2014 + 0
f' = 2014(x^2013 - 1)
[x^2014 - 2014(x-1)]’
(x^2014)’-2014x+2014
2014x^2013 - (2014x)’ + 2014’
2014x^2013-2014+o
deoare (2014x)’=2014 ori 1
iar 2014’= 0
f(x) = x^2014 -2014x +2014
f' = (x^2014)' -(2014x)' +(2014)' = 2014*x^2013 -2014 + 0
f' = 2014(x^2013 - 1)