T1=G=mg
T2cosα-T1cosβ=0
T2sinα+T1sinβ-G1=0
T2=2T1=>cosβ=2cosα
α+β=90°=>β=90°-α=>cosβ=sinα=>2cosα=sinα=>sinα=2/√5 ; sinβ=1/√5
G1=2T1sinα+T1sinβ=mg(2sinα+sinβ)=2*10*(2*2/√5+1/√5)=20(5/√5)=100/√5≈44,7 N
G1=m1g=>m1=G1/g=44,7/10=4,47 kg
T2=2T1=2mg=2*2*10=40 N
R1²=T1²+T1'²+2T1T1'*cos(90-β)=2T1²(1+sinβ)
R=T1√[2(1+sinβ)]=mg√[2(1+sinβ)]=20√[2(1+1/√5)]=20√2,89=20*1,7=34 N