Răspuns :
[tex]\displaystyle\\ \text{Pentru }~~C_n^k ~~\text{ avem urmatoarele conditii pentru }~n\text{ si }k:\\\\ C1)~~~n,~k \in N\\ C2)~~~n\geq 1\\ C3)~~~0\leq k \leq n\\\\ \Longrightarrow~~\log_2 x~~si ~~\log_4x \in N\\\\ \Longrightarrow~~x~~\text{este o putere a lui 4},~x \neq 0 [/tex]
[tex]\displaystyle\\ x=4^0 = 1\\ \log_2 1 = 0\\ 2+\log_4 1 = 2+0=2\\ C_2^0=\boxed{1}\\\\ x=4^1 = 4\\ \log_2 4 = 2\\ 2+\log_4 4 = 2+1=3\\ C_3^2=\frac{A_3^2}{P_2}=\frac{3\cdot 2}{1\cdot 2}=\boxed{3}\\\\ x=4^2=16\\ \log_2 16 = 4\\ 2+\log_4 16 = 2+2=4\\ C_4^4 = \frac{A_4^4}{P_4}= \frac{4\cdot3\cdot2\cdot1}{1\cdot 2\cdot3\cdot4}=\boxed{1}\\\\ x=4^3=64\\ \log_2 64 = 6\\ 2+\log_4 64 = 2+3=5\\ 6 \ \textgreater \ 5~~~\text{Nu respecta conditia: }~~ 0 \leq k \leq n [/tex]
[tex]\displaystyle\\ x\in \{1;~4;~16\}\\\\ C_{2+\log_4x}^{\log_2 x} = \begin{cases} 1~~\text{daca}~~x=1\\ 3~~\text{daca}~~x=4\\ 1~~\text{daca}~~x=16 \end{cases}\\\\\\ \text{Alte valori pentru }~x~\text{ nu sunt admise.} [/tex]