Răspuns :
Pentru radicalul [tex] \sqrt{9-4 \sqrt{2} }
[/tex] se foloseste formula radicalilor compusi:
[tex] \sqrt{a- \sqrt{b} } = \sqrt{ \frac{a+ \sqrt{ a^{2}-b } }{2} } - \sqrt{ \frac{a- \sqrt{ a^{2}-b } }{2} }[/tex]
In cazul nostru a=9 iar b= 32 (introducem 4 sub radical)
[tex] \sqrt{9-4 \sqrt{2} } = \sqrt{9- \sqrt{32} } = \sqrt{ \frac{9+ \sqrt{81-32} }{2} } - \sqrt{ \frac{9- \sqrt{81-32} }{2} }= \\ \sqrt{ \frac{9+ \sqrt{49} }{2} } - \sqrt{ \frac{9- \sqrt{49} }{2} }= \sqrt{ \frac{9+7}{2} }- \sqrt{ \frac{9-7}{2} }= \sqrt{8} -1=2 \sqrt{2} -1[/tex]
Rezulta ca expresia =2[tex] \sqrt{2} [/tex]-1-[tex]2 \sqrt{2} [/tex]=-1
[tex] \sqrt{a- \sqrt{b} } = \sqrt{ \frac{a+ \sqrt{ a^{2}-b } }{2} } - \sqrt{ \frac{a- \sqrt{ a^{2}-b } }{2} }[/tex]
In cazul nostru a=9 iar b= 32 (introducem 4 sub radical)
[tex] \sqrt{9-4 \sqrt{2} } = \sqrt{9- \sqrt{32} } = \sqrt{ \frac{9+ \sqrt{81-32} }{2} } - \sqrt{ \frac{9- \sqrt{81-32} }{2} }= \\ \sqrt{ \frac{9+ \sqrt{49} }{2} } - \sqrt{ \frac{9- \sqrt{49} }{2} }= \sqrt{ \frac{9+7}{2} }- \sqrt{ \frac{9-7}{2} }= \sqrt{8} -1=2 \sqrt{2} -1[/tex]
Rezulta ca expresia =2[tex] \sqrt{2} [/tex]-1-[tex]2 \sqrt{2} [/tex]=-1