👤

Se considera triunghiul ABC cu m(< A ) = 90 grade .Dacă BC = 40 cm si sin C = 4 supra 5 calculati : AB , AC , sin B , cos C , tg C , ctg C .
AZI :22.03.2018
PÂNĂ MÂINE TREBUIE SA FIEGATA TEMA !!! AJUTOR PLS ????


Răspuns :

   
[tex]\displaystyle\\ \text{Se da:}\\ \Delta ABC \text{ cu }~m(\sphericalangle A)=90^o ,~ BC=40~\text{cm}~\text{ si }~\sin C= \frac{4}{5}\\\\ \text{Se cere:}\\ a)~AB,~b)~AC,~c)~\sin B,~d)~\cos C,~e)~\text{tg }C,~f)~\text{ctg }C\\\\ \text{Rezolvare:}\\\\ a)\\ \sin C= \frac{4}{5}= \frac{AB}{BC} \\\\ \Longrightarrow~~AB= \frac{4\times BC}{5}= \frac{4\times 40}{5}=4\times 8=\boxed{\bf 32~cm}\\\\ b)\\ AC= \sqrt{BC^2-AB^2}= \sqrt{40^2-32^2}=\\\\ =\sqrt{1600-1024}=\sqrt{576}=\boxed{\bf 24~cm}\\\\ [/tex]

[tex]\displaystyle\\ c)\\ \sin B = \frac{AC}{BC}= \frac{24}{40}= \frac{8\times 3}{8\times 5}=\boxed{\bf \frac{3}{5}}\\\\ d)\\ \cos C= \frac{AC}{BC}= \frac{24}{40}= \frac{8\times 3}{8\times 5}=\boxed{\bf \frac{3}{5}}\\\\ \text{Din c) si d) putem observa ca }~\sin B =\cos C.\\ \text{Explicatia: unghiurile B si C sunt unghiuri complementare.}\\\\ e)\\ \text{tg }C = \frac{AB}{AC}= \frac{32}{24}= \frac{8\times 4}{8\times 3}= \boxed{\bf \frac{4}{3}}\\\\ [/tex]

[tex]\displaystyle\\ f)\\ \text{ctg }C = \frac{AC}{AB}= \frac{24}{32}= \frac{8\times 3}{8\times 4}= \boxed{\bf \frac{3}{4}}\\\\[/tex]



Vezi imaginea Tcostel