Formule ce vor fi utilizate:
→∫x^n dx = x^(n+1)/n+1 + C
→∫c dx = cx+ C, unde c este un numar real
→[tex] \int\limits^a_b {f(x)} \, dx = [/tex] F(x) calculat de la a la b = F(b)-F(a) , unde F(x) este primitiva functiei f(x).
[tex] \int\limits^1_0 {x^{2}+2x+1 } \, dx = [/tex] [tex] x^{2+1}/3 [/tex] calculat de 0 la 1 + 2[tex] x^{1+1}/2 [/tex] + x calculat de la 0 la 1=1/3-0/3+2*1/2-2*0/2+1-0=1/3+2/2+1=1/3+1+1=1/3+2=1/3+2*3/3=(1+6)/3=7/3