👤
a fost răspuns

[tex]Rezolvati~in~R:\\ log_{2} (x^2+4)-log_{2} x+x^2-4x+2=0\\ \\ Rezolvarea~mea~:\\ (x\ \textgreater \ 0) Notez~log_{2} x=a=\ \textgreater \ x^2=4^a.\\ Inocuiesc:\\ log_{2}(4^a+4)-a+4^a-4*2^a+2=0\\ log_{2}(4^a+4)=4*2^a+a-4^a-2\\ Fie~f,g:R-(0,inf), f(a)=membrul~drept\\ g(a)=membrul~stang\\ Membrul~stang~e~cresc.~iar~cel~drept~descresc.\\ Deci~ecuatia~admite~cel~mult~o~solutie. a=1 ~verifica~\\ deci~x=2.[/tex]\

E corect ce am facut ?