👤

Fie sirul: 0,1,4,10,20,35,56..
a. Scrie urmatorii 2 termeni, al 15-lea termen
b.nr 2017 este in sir?


Răspuns :

[tex]\it a_1 =\ 0 \\ a_2 =\ 1 \\ a_3 =\ 4 \\ a_4 =10 \\ a_5 =20 \\ a_6 =35 \\ a_7 =56 \\ ---- [/tex]

[tex]\it a_2-a_1= 1-0=1=\dfrac{2\cdot1}{2} = \dfrac{2\cdot(2-1)}{2} = \dfrac{2^2-2}{2} \\ \\ a_3-a_2= 4-1=3=\dfrac{3\cdot2}{2} = \dfrac{3\cdot(3-1)}{2} = \dfrac{3^2-3}{2} \\ \\ a_4-a_3= 10-4=6=\dfrac{4\cdot3}{2} = \dfrac{4\cdot(4-1)}{2} = \dfrac{4^2-4}{2} \\ \\ a_5-a_4= 20-10=10=\dfrac{5\cdot4}{2} = \dfrac{5\cdot(5-1)}{2} = \dfrac{5^2-5}{2} \\ .\\.\\ . \\ a_n-a_{n-1} = \dfrac{n^2-n}{2} \\ ------------- \ adun\breve{a}m : \\ \\ (a_2+a_3+a_4+a_5+...+a_n)-(a_1+a_2+a_3+a+4+...+a_{n-1})=[/tex]

[tex]\it \dfrac{1}{2}[(2^2+3^2+4^2+...+n^2)- (2+3+4+...+n)] \Rightarrow a_n-a_1= \\ \\ \\ = \dfrac{1}{2}[(1^2+2^2+3^2+4^2+...+n^2)- (1+2+3+4+...+n)] \Rightarrow a_n= \\ \\ \\ = \dfrac{1}{2}\left[\dfrac{n(n+1)(2n+1)}{6} -\dfrac{n(n+1)}{2}\right] =\dfrac{1}{4}n(n+1)\left(\dfrac{2n+1}{3}-1\right)=[/tex]

[tex]\it= \dfrac{1}{4}n(n+1)\cdot\dfrac{2n+1-3}{3} = \dfrac{1}{4}n(n+1)\cdot\dfrac{2n-2}{3} = \\ \\ \\ =\dfrac{1}{4}n(n+1)\cdot\dfrac{2(n-1)}{3} = \dfrac{(n-1)n(n+1)}{6} [/tex]

[tex]\it Deci,\ a_n = \dfrac{(n-1)n(n+1)}{6} [/tex]


[tex]\it a_8 = \dfrac{7\cdot8\cdot9}{6} = 84 \\ \\ \\ a_9 = \dfrac{8\cdot9\cdot10}{6} = 120 \\ \\ \\ a_{15} = \dfrac{14\cdot15\cdot16}{6} = 560[/tex]

[tex]\it a_n=\dfrac{(n-1)n(n+1)}{6} \Rightarrow 6\cdot a_n= (n-1)n(n+1) \\ \\ \\ 6\cdot2017 = 2\cdot3\cdot2017 \neq (n-1)n(n+1) [/tex]

Așadar, 2017 nu este un termen al șirului.