Răspuns :
[tex]\displaystyle\\ x,~y,~z~~\text{ sunt cifre}\\\\ n=\overline{x,\!(y)}+\overline{y,\!(z)}+\overline{z,\!(x)}\\\\ n= \frac{\overline{xy}-x }{9}+ \frac{\overline{yz}-y }{9}+ \frac{\overline{zx}-z }{9}\\\\ n= \frac{10x+y-x }{9}+ \frac{10y+z-y }{9}+ \frac{10z+x-z }{9}\\\\ n= \frac{9x+y}{9}+ \frac{9y+z}{9}+\frac{9z+x}{9}\\\\ n= \frac{9x}{9}+ \frac{y}{9} + \frac{9y}{9}+ \frac{z}{9}+\frac{9z}{9}+ \frac{x}{9}\\\\ n= \frac{9x}{9}+ \frac{9y}{9}+\frac{9z}{9}+ \frac{y}{9} + \frac{z}{9}+ \frac{x}{9} [/tex]
[tex]\displaystyle\\ n= \frac{9x+9y+9z}{9}+ \frac{x+y+z}{9} \\\\ n= \frac{9(x+y+z)}{9}+ \frac{x+y+z}{9} \\\\ n=(x+y+z)+\frac{x+y+z}{9}\\\\ n \in N (x+y+z) \in N \Longrightarrow~~\frac{x+y+z}{9}\in N~~\Longrightarrow~~(x+y+z)~\vdots~9 \\\\ \text{(Problema nu spune ca x; y; z sunt cifre diferite.)}\\\\ \Longrightarrow~~(x+y+z) = 9\cdot k\\ M_9 = \{0;~9;~18;~27\} \\\\ \Longrightarrow~~k \in =\{0;~1;~2;~3\}[/tex]
[tex]\displaystyle\\ \text{Rezulta solutiile:}\\\\ n_1 = (x+y+z)+\frac{x+y+z}{9} = 0 + \frac{0}{9} =0+0=\boxed{0}\\ n_1 ~~\text{este solutie daca acceptam scrierea numarului zecimal:}~0,\!(0)=0 \\\\ n_2 = (x+y+z)+\frac{x+y+z}{9} = 9 + \frac{9}{9} =9+1=\boxed{10}\\ \text{Pentru }n_2 \text{ sunt multe combinatii de cifre a caror suma = 9.}\\\\ n_3 = (x+y+z)+\frac{x+y+z}{9} = 18 + \frac{18}{9} =18+2=\boxed{20}\\ \text{Pentru }n_3 \text{ sunt multe combinatii de cifre a caror suma = 18.}\\\\ [/tex]
[tex]\displaystyle\\ n_4 = (x+y+z)+\frac{x+y+z}{9} = 27 + \frac{27}{9} =27+3=\boxed{30}\\ n_4 ~~\text{este solutie daca acceptam scrierea numarului zecimal:}~9,\!(9)=10\\\\ \boxed{n \in \{0;~10;~20;~30\}} [/tex]