👤
Daianaalexa
a fost răspuns

Rezolvati in multimea numerelor reale ecuatia: 2^1+x + 2^1-x =5 va rog mult

Răspuns :

[tex] {2}^{1 + x} + {2}^{1 - x} = 5[/tex]

[tex]2 \times {2}^{x} + 2 \times {2}^{ - x} = 5[/tex]

[tex]2( {2}^{x} + {2}^{ - x}) = 5[/tex]

[tex] {2}^{x} + {2}^{ - x} = \frac{5}{2} [/tex]

[tex] {2}^{x} + \frac{1}{ {2}^{x} } = \frac{5}{2} [/tex]

[tex] {2}^{x} + \frac{1}{ {2}^{x} } - \frac{5}{2} = 0[/tex]

[tex]notam \: {2}^{x} \: cu \: un \: t[/tex]

[tex] {2}^{x} = t[/tex]

[tex]t + \frac{1}{t} - \frac{5}{2} = 0 \: | \times t[/tex]

[tex] {t}^{2} + 1 - \frac{5t}{2} = 0 \: | \times 2[/tex]

[tex]2 {t}^{2} + 2 - 5t = 0[/tex]

[tex]2 {t}^{2} - 5t + 2 = 0[/tex]

[tex]a = 2[/tex]

[tex]b = - 5[/tex]

[tex]c = 2[/tex]

[tex]delta = {b}^{2} - 4ac[/tex]

[tex]delta = {( - 5)}^{2} - 4 \times 2 \times 2[/tex]

[tex]delta = 25 - 16[/tex]

[tex]delta = 9[/tex]

[tex]t(1.2) = \frac{ - b + - \sqrt{delta} }{2a} [/tex]

[tex]t(1.2) = \frac{ - ( - 5) + - \sqrt{9} }{2 \times 2} [/tex]

[tex]t(1.2) = \frac{5 + - 3}{4} [/tex]

[tex]t(1) = \frac{5 + 3}{4} = \frac{8}{4} = 2[/tex]

[tex]t(2) = \frac{5 - 3}{4} = \frac{2}{4} = \frac{1}{2} [/tex]

[tex]{2}^{x}=2[/tex]

[tex]x1=1[/tex]

[tex]{2}^{x}=\frac{1}{2}[/tex]

[tex]x2=-1[/tex]