👤
a fost răspuns

Fie funcția f:R->R, f(x)=ax+6. Să se determine a e R dacă graficul funcției intersectează axa Ox in punctul: a) A (-2, 0), b) A (-a+1, 0). Un raspuns bun din partea voastră ar fi binevenit,

Răspuns :

ai rezolvarea în imagine
Vezi imaginea Аноним
a)


[tex]\it A(-2,\ 0) \in Gf \Rightarrow f(-2)= 0\ \ \ \ (1) \\\;\\ f(x) = ax+6 \Rightarrow f(-2) = a\cdot(-2) +6 \Rightarrow f(-2) = -2a +6 \ \ \ \ (2) \\\;\\ (1),\ (2) \Rightarrow -2a +6 =0 \Rightarrow 6 = 2a \Rightarrow 2a=6 \Rightarrow a = 3\ .[/tex]

b)

[tex]\it A(-a+1,\ 0) \in Gf \Rightarrow f(-a+1) = 0\ \ \ \ \ (1) \\\;\\ f(x) =ax+6 \Rightarrow f(-a+1) = a(-a+1) +6 = -a^2+a+6 \Rightarrow \\\;\\ \Rightarrow f(-a+1) = -a^2+a+6\ \ \ \ \ (2) \\\;\\ (1),\ (2) \Rightarrow -a^2+a+6 = 0|_{\cdot(-1)} \Rightarrow a^2-a-6=0 \Rightarrow \\\;\\ \Rightarrow a^2-3a+2a-6=0\ \Rightarrow a(a-3) +2(a-3) =0 \Rightarrow [/tex]

[tex]\it \Rightarrow (a-3)(a+2)=0 \Rightarrow \begin{cases}\it a+2=0 \Rightarrow a=-2\\ \\ \it a-3=0 \Rightarrow a=3\end{cases}[/tex]