Răspuns :
[tex]f:D\rightarrow \mathbb_{R}, $ $\\ \\ a)$ $ f(x) = 5x^4 - 11 \\ f(-x) = 5(-x)^4-11 = 5x^4-11 \Rightarrow f(-x) = f(x) \\ \\ \Rightarrow f$ $ para. \\ \\ b)$ $ f(x) = \sqrt{25}-4x^4 \\ f(-x) = 5 - 4(-x)^4 = 5 - 4x^4 \Rightarrow f(-x) = f(x) \\ \\ \Rightarrow f$ $para.\\ \\ c)$ $ f(x) = \dfrac{x^3+x}{x^2+4}\\\\ f(-x) = \dfrac{(-x)^3+(-x)}{(-x)^2+4} = \dfrac{-x^3-x}{x^2+4} = -\dfrac{x^3+3}{x^2+4} \Rightarrow f(x) = -f(x) \\ \\ \Rightarrow f $ $impara. [/tex]
[tex]d) $ $f(x) = |x-4|-|4+x| \\ f(-x) = |-x-4| - |4+(-x)| = |-(x+4)|-|4-x| = \\ =|x+4|-|-(x-4)| = |x+4| - |x-4| = |4+x| - |x-4| = \\ =-\Big(|x-4|-|4+x|\Big) \Rightarrow f(-x) = -f(x) \\ \\ \Rightarrow f$ $impara.\\ \\ e) $ $ f(x) = \dfrac{-x-3x^3}{3+|x|} \\ f(-x) =\dfrac{-(-x) -3(-x)^3}{3+|-x|} = \dfrac{x-3\cdot (-1)\cdot x^3}{3+|x|} = \dfrac{x+3x^3}{3+|x|} = \\ =-\dfrac{-x-3x^3}{3+|x|}\Rightarrow f(-x) = -f(x) \\ \\ \Rightarrow f $ $ impara.[/tex]
[tex]d) $ $f(x) = |x-4|-|4+x| \\ f(-x) = |-x-4| - |4+(-x)| = |-(x+4)|-|4-x| = \\ =|x+4|-|-(x-4)| = |x+4| - |x-4| = |4+x| - |x-4| = \\ =-\Big(|x-4|-|4+x|\Big) \Rightarrow f(-x) = -f(x) \\ \\ \Rightarrow f$ $impara.\\ \\ e) $ $ f(x) = \dfrac{-x-3x^3}{3+|x|} \\ f(-x) =\dfrac{-(-x) -3(-x)^3}{3+|-x|} = \dfrac{x-3\cdot (-1)\cdot x^3}{3+|x|} = \dfrac{x+3x^3}{3+|x|} = \\ =-\dfrac{-x-3x^3}{3+|x|}\Rightarrow f(-x) = -f(x) \\ \\ \Rightarrow f $ $ impara.[/tex]