👤
Dragos35
a fost răspuns

Sa se afle : a) a:b= cand a=2,1(6)-1 intreg 5/9 - 0,75
b= -5/3
b) numarul mai mare dintre : a= 0,375•1,8(3)•3/22•0,(4)
b=1/9


Răspuns :

[tex]a)a = 2.1(6) - 1 \frac{5}{9} - 0.75[/tex]

[tex]a = 2 \frac{16 - 1}{90} - \frac{1 \times 9 + 5}{9} - \frac{75}{100} [/tex]

[tex]a = 2 \frac{15}{90} - \frac{9 + 5}{9} - \frac{75}{100} [/tex]

[tex]a = \frac{2 \times 90 + 15}{90} - \frac{14}{9} - \frac{75}{100} [/tex]

[tex]a = \frac{180 + 15}{90} - \frac{14}{9} - \frac{75}{100} [/tex]

[tex]a = \frac{195}{90} - \frac{14}{9} - \frac{75}{100} [/tex]

[tex]a = \frac{1950}{900} - \frac{1400}{900} - \frac{675}{900} [/tex]

[tex]a = \frac{1950 - 1400 - 675}{900} [/tex]

[tex]a = \frac{ - 125}{900} [/tex]

[tex]a = - \frac{125}{900} [/tex]

[tex]a = - \frac{25}{180} [/tex]

[tex]a = - \frac{5}{36} [/tex]

[tex] b = - \frac{5}{3} [/tex]

[tex]a \div b = - \frac{5}{36} \div ( - \frac{5}{3} )[/tex]

[tex]a \div b = - \frac{5}{36} \times ( - \frac{3}{5} )[/tex]

[tex]a \div b = \frac{5 \times 3}{36 \times 5} [/tex]

[tex]a \div b = \frac{15}{180} [/tex]

[tex]a \div b = \frac{3}{36} [/tex]

[tex]a \div b = \frac{1}{12} [/tex]

[tex]b)a = 0.375 \times 1.8(3) \times \frac{3}{22} \times 0.(4)[/tex]

[tex]a = \frac{375}{1000} \times 1\frac{83 - 8}{90} \times \frac{3}{22} \times \frac{4}{9} [/tex]

[tex]a = \frac{75}{200} \times 1 \frac{75}{90} \times \frac{3}{22} \times \frac{4}{9} [/tex]

[tex]a = \frac{15}{40} \times \frac{1 \times 90 + 75}{90} \times \frac{3}{22} \times \frac{4}{9} [/tex]

[tex]a=\frac{3}{8}\times\frac{90+75}{90}\times\frac{3}{22}\times\frac{4}{9}[/tex]

[tex]a=\frac{3}{8}\times\frac{165}{90}\times\frac{3}{22}\times\frac{4}{9}[/tex]

[tex]a=\frac{3\times165\times3}{8\times22\times9}[/tex]

[tex]a=\frac{496\times3}{176\times9}[/tex]

[tex]a=\frac{1488}{1584}[/tex]

[tex]a=\frac{744}{792}[/tex]

[tex]a=\frac{372}{396}[/tex]

[tex]a=\frac{186}{198}[/tex]

[tex]a=\frac{93}{99}[/tex]

[tex]a=\frac{31}{33}[/tex]

[tex]a=\frac{93}{99}[/tex]

[tex]b=\frac{1}{9}=\frac{11}{99}[/tex]

[tex]=>\frac{93}{99}>\frac{11}{99}=>a>b[/tex]