Răspuns :
412:4 + {19+2[216-5(ab+1)]} x10 = 2013
{19+2[216-5(ab+1)]} x10 = 2013-103 = 1910
{19+2[216-5(ab+1)]}= 1910:10 = 191
{19+2[216-5(ab+1)]} = 191
2[216-5(ab+1)] = 191-19 = 172
432 -10(ab+1) = 172
10(ab+1) = 432-172
10(ab+1) = 260
ab+1=26 => ab=25
vom avea perechile de numere naturale:
(1 si 25) ,(5 si 5), ( 25 si 1)
{19+2[216-5(ab+1)]} x10 = 2013-103 = 1910
{19+2[216-5(ab+1)]}= 1910:10 = 191
{19+2[216-5(ab+1)]} = 191
2[216-5(ab+1)] = 191-19 = 172
432 -10(ab+1) = 172
10(ab+1) = 432-172
10(ab+1) = 260
ab+1=26 => ab=25
vom avea perechile de numere naturale:
(1 si 25) ,(5 si 5), ( 25 si 1)
412/4+{19+2[216-5(a×b+1)]}×10=2013
103+{19+2[216-5(a×b+1)]}×10=2013
{19+2[216-5(a×b+1)]}×10=1910
{19+2[216-5(a×b+1)]}=191
2[216-5(a×b+1)]=172
216-5(a×b+1)=86
5(a×b+1)=130
a×b+1=26
a×b=25 solutia: S={1;25}∪{5;5}∪{25;1}.
103+{19+2[216-5(a×b+1)]}×10=2013
{19+2[216-5(a×b+1)]}×10=1910
{19+2[216-5(a×b+1)]}=191
2[216-5(a×b+1)]=172
216-5(a×b+1)=86
5(a×b+1)=130
a×b+1=26
a×b=25 solutia: S={1;25}∪{5;5}∪{25;1}.